메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
이광형 (서일대학교) 박재표 (숭실대학교)
저널정보
한국산학기술학회 한국산학기술학회 논문지 한국산학기술학회논문지 제18권 제11호
발행연도
2017.11
수록면
46 - 52 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
최근 ICT 및 IoT 제품의 활용 분야가 다양화 되면서 오픈소스 소프트웨어의 활용 분야가 컴퓨터, 스마트폰, IoT 디바이스 등 다양한 기기와 환경에서 활용되고 있다. 이처럼 오픈소스 소프트웨어의 활용분야가 다양해짐에 따라 오픈소스의 보안 취약점을 악용하는 불법적인 사례가 지속적으로 증가하고 있다. 이에 따라 다양한 시큐어 코딩을 위한 도구나 프로그램이 출시되고 활용되고 있지만 여전히 많은 취약점들이 발생하고 있다. 본 논문에서는 안전한 오픈 소스 소프트웨어 개발을 위해 오픈 소스의 취약점 분석 결과에 의한 이력과 패턴을 지속적으로 학습하여 신규 취약점 분석에 활용할 수 있는 방법을 제안한다. 본 연구를 통해 취약점 이력 및 패턴 학습기반의 취약점 분석 시스템을 설계하였으며, 프로토타입으로 구현하여 실험을 통해 시스템의 성능을 평가하였다. 5개의 취약점 항목에 대해 평균 취약점 검출 시간은 최대 약 1.61sec가 단축되었으며, 평균 검출 정확도는 약 44%point가 향상된 것을 평가결과에서 확인할 수 있었다. 본 논문의 내용 및 결과는 소프트웨어 취약점 연구 분야에 대한 발전과 소프트웨어 개발자들의 취약점 분석을 통한 시큐어 코딩에 도움이 될 것을 기대한다.

목차

요약
Abstract
1. 서론
2. 관련 연구
3. 취약점 이력 및 패턴 학습기반 취약점 분석 시스템
4. 프로토타입 구현 및 성능 평가
5. 결론
References

참고문헌 (23)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-505-001520340