메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
Gang-Kyu Park (Korea Advanced Institute of Science and Technology) Hong Jae Yim (Kyungpook National University)
저널정보
한국콘크리트학회 International Journal of Concrete Structures and Materials International Journal of Concrete Structures and Materials Vol.11 No.3
발행연도
2017.9
수록면
447 - 457 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Fire damage to concrete causes contact-type defects that degrade its durability through impaired mechanical properties. Various nondestructive tests are used to evaluate defects induced by fire damage. Recently, nonlinear ultrasonic methods such as the nonlinear resonance vibration method and nonlinear modulation method have been introduced. These nonlinear methods are more sensitive to fire-induced contact-type defects than the linear ultrasonic method. This study involved an experimental analysis of the residual material properties of fire-damaged concrete, specifically, compressive strength, splitting tensile strength, and static elastic modulus. The residual material properties of 116 cylindrical concrete samples with various mix proportions and subjected to various heating temperatures were measured by a destructive method, and their nonlinearity parameters were measured by two nonlinear ultrasonic methods. Through regression analysis, correlated relationships that can facilitate the prediction of residual material properties of fire-damaged concrete using measured nonlinearity parameters were identified. In addition, the effect of fire damage on the mechanical strength of concrete was investigated by comparison with the relationships for undamaged concrete, and relationships for the evaluation of fire-damaged concrete were identified through regression analysis.

목차

Abstract
1. Introduction
2. Sample Preparation: Fire-Damaged Concrete
3. Nonlinear Ultrasonic Methods
4. Mechanical Strength Measurements
5. Results and Discussion
6. Conclusion
References

참고문헌 (34)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-532-001249687