메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
최혜진 (KT) 심준호 (숙명여자대학교)
저널정보
한국전자거래학회 한국전자거래학회지 한국전자거래학회지 제22권 제3호
발행연도
2017.8
수록면
75 - 85 (11page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
전자 상거래 산업에서 많이 사용되고 있는 개인화 추천은 많은 분야에서 효과를 입증하고 있다. 개인화 추천을 위해서는 개인 정보를 포함하여 아이템을 재 분류해야하는 추가 작업이 필요하다. 본 연구에서는 개인 정보를 사용하지 않고 아이템을 재분류 하지 않는 추천 기법에 대해 제안한다. 음악 추천 영역으로 제한하여 실험하였으며, 실제 청취 이력 데이터를 사용하였다. 실험 분석을 통해 적은 데이터로도 유의미한 추천을 이끌어 낼 가능성을 살피고, 상황별 추천을 위한 아이템 수 분석과 추가 기법을 제안한다.

목차

초록
ABSTRACT
1. 서론
2. 관련 연구
3. 제안 알고리즘
4. 실험
5. 결론
References

참고문헌 (12)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-004-001278905