메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
장준영 (한국기술교육대학교) 이강운 (한국기술교육대학교) 김영진 (한국기술교육대학교) 김원태 (한국기술교육대학교)
저널정보
대한전자공학회 전자공학회논문지 전자공학회논문지 제54권 제4호 (통권 제473호)
발행연도
2017.4
수록면
50 - 58 (9page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
최근 들어, 효과적인 화재감지를 위해 이종 화재센서 데이터들을 융합하는 방안들이 제안되었으나, 룰 기반의 방법의 경우 적응성과 정밀도가 낮고, 퍼지추론의 경우 영상에 대한 고려 미흡으로 검출 속도와 정밀도가 떨어지는 등의 문제점들이 있다. 더불어 영상기반 딥러닝 기술들도 제안되었으나, 실제 상황에서 카메라가 없거나 카메라 영역 밖의 화재 발생에 대한 신속한 탐지가 어렵다. 이에 본 논문에서는 CNN 기반의 딥러닝 알고리즘과 온도·습도·가스·연기를 포함하는 이종 화재센서 데이터기반의 퍼지추론엔진을 결합시킨 새로운 방식의 화재 감지 시스템을 제안한다. 이로써 영상 데이터를 활용한 신속한 화재 감지와 이종 센서 데이터들을 이용한 신뢰성 있는 화재 감지가 가능해짐을 보인다. 또한, 대규모 시스템에서 컴퓨팅 파워의 지나친 서버 집중을 방지하기 위해 화재 인식 알고리즘에 분산 컴퓨팅 구조를 채택하여 확장성을 높인다. 마지막으로, NIST 화재 동역학 시뮬레이터를 이용한 화재 시뮬레이션 데이터와 화재영상을 활용하여 화재가 점진적으로 번지는 환경과 급작스럽게 폭발이 발생하는 환경에서 실험을 수행함으로써 시스템의 성능을 검증한다.

목차

요약
Abstract
Ⅰ. 서론
Ⅱ. 관련 연구
Ⅲ. S-FDS 설계 및 구현
Ⅳ. 검증 및 분석
V. 결론
REFERENCES

참고문헌 (13)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2018-569-000796453