메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김민 (부경대학교) 강기봉 (부경대학교) 정주호 (KAIST) 김경태 (포항공과대학교) 박상홍 (부경대학교)
저널정보
한국전자파학회 한국전자파학회논문지 韓國電磁波學會論文誌 第27卷 第8號(通卷 第231號)
발행연도
2016.8
수록면
758 - 765 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문에서는 편대비행 중인 다수의 표적을 식별하기 위하여 기존의 표적들을 분리시키는 기법을 이용하는 대신 PSO(Particle Swarm Optimization) 알고리즘을 이용하여 미리 학습되어 있던 각 표적의 역합성 개구면 레이다(Inverse Synthetic Aperture Radar: ISAR) 영상들을 합성하는 방법을 제안한다. 제안된 기법에서 ISAR 영상의 합성은 표적의 수와 관측 각도 및 표적의 위치를 변수로 하는 비선형문제를 최적화함으로써 수행된다. 추적 레이다를 통하여 관측 각도가 추정됨을 가정한 후, 표적의 수와 위치는 PSO로 템플릿 매칭(template matching)을 최적화 하여 추정된다. 축소된 크기의 F-16을 사용한 시뮬레이션 결과, 편대비행 중인 표적들의 ISAR 영상과 동일한 ISAR 영상이 합성됨으로써 제안된 기법의 효용성이 검증되었다.

목차

요약
Abstract
Ⅰ. 서론
Ⅱ. 본론
Ⅲ. 시뮬레이션 결과
Ⅳ. 결론
References

참고문헌 (7)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2017-427-000982843