메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
신성호 (한국과학기술정보연구원) 황미녕 (한국과학기술정보연구원) 서동민 (한국과학기술정보연구원) 최성필 (경기대학교) 이승우 (한국과학기술정보연구원) 송사광 (한국과학기술정보연구원) 정한민 (한국과학기술정보연구원)
저널정보
Korean Institute of Information Scientists and Engineers 정보과학회논문지 : 컴퓨팅의 실제 및 레터 정보과학회논문지 : 컴퓨팅의 실제 및 레터 제20권 제7호
발행연도
2014.7
수록면
425 - 429 (5page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
텍스트에서의 개체명 인식은 텍스트 상에 존재하는 주요 개체명들을 인식하여 특정 목적에 맞게 분류하는 작업으로서, 개체명 간 관계 추출 및 이벤트 추출의 시작점이 된다. 개체명 인식의 정확도는 어느 정도 성능을 달성했다고 할 수 있지만, 실제 방대한 문헌에서의 체감 성능을 높이는 과제는 여전히 남아 있다. 기계학습 기반의 개체명 인식의 정확도는 개체명 인식에 사용되는 기계학습 모델의 정확도에 많은 영향을 받으며, 기계학습 모델은 학습을 위한 데이터셋을 얼마나 정교하게 구축했느냐에 절대적으로 영향을 받는다. 본 연구에서는 기계학습 기반의 개체명 인식의 정확도 향상을 위해 기존 학습 집합 태깅에 있어서의 문제점을 분석하여 해결 방안을 제시한다. 또한 기존 의사결정 트리 모델을 단순화하여 모델 자체가 직관적이어서 개체명 인식 오류에 대해서 피드백하기 쉽다는 장점이 있고, 기존 의사결정 모델들에 비해 정확하고 명확한 개체명 인식을 할 수 있을 것으로 기대할 수 있다.

목차

요약
Abstract
1. 서론
2. 관련연구
3. 학습 집합 구축
4. 개체명 인식 모델 구축
5. 결론
References

참고문헌 (10)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2015-560-001621809