메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
송경빈 (숭실대학교)
저널정보
대한전기학회 전기학회논문지 전기학회논문지 제63권 제4호
발행연도
2014.4
수록면
451 - 454 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Short-term load forecasting(STLF) for electric power demand is essential for stable power system operation and efficient power market operation. We improved STLF method by using hourly temperature as an input data. In order to using hourly temperature to STLF algorithm, we calculated temperature-electric power demand sensitivity through past actual data and combined this sensitivity to exponential smoothing method which is one of the STLF method. The proposed method is verified by case study for a week. The result of case study shows that the average percentage errors of the proposed load forecasting method are improved comparing with errors of the previous methods.

목차

Abstract
1. 서론
2. 시간대별 기온을 이용한 전력수요예측 알고리즘
3. 사례연구
4. 결론
References

참고문헌 (9)

참고문헌 신청

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2015-500-001356498