메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
오현교 (한양대학교) 윤석호 (한양대학교) 김상욱 (한양대학교)
저널정보
한국멀티미디어학회 한국멀티미디어학회 학술발표논문집 2009년도 추계학술발표논문집
발행연도
2009.11
수록면
532 - 535 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (2)

초록· 키워드

오류제보하기
이미지 데이터가 증가함에 따라 효율적인 검색을 위해서 이미지 데이터를 구조화해야할 필요성이 증가하고 있다. 이미지 데이터를 구조화하기 위한 대표적인 방법으로는 클러스터링이 있다. 그러나 기존의 방법들은 클러스터링을 수행하기 전에 매개변수로서 클러스터의 개수를 사용자로부터 제공 받아야 하는 어려움이 있다. 따라서 본 논문에서는 클러스터의 개수를 사용자에게 제공 받지 않고 이미지 데이터를 클러스터링 하는 방안에 대해서 논의한다. 제안하는 방안은 객체들 간의 상호 연관관계를 이용하여 매개변수 없이 데이터의 감추어진 구조나 패턴을 찾아내는 방법인 Cross-Association을 기반으로 한다. 이미지 데이터 클러스터링에 Cross-Association을 적용하기 위해서는 먼저 이미지 데이터를 그래프로 변환해야 하는데, 이때 유사도 기반의 k-최근접 이웃검색과 비대칭적 방법 또는 대칭적인 방법을 이용하여 그래프를 생성한다. 그런 후에 생성된 그래프를 Cross-Association에 적용시키고 그 결과를 클러스터링 관점에서 해석한다. 실험을 통하여 이미지 데이터를 클러스터링 하는데 적절한 k-최근접 이웃검색에서의 k값과 적합한 그래프 생성 방법이 무엇인지를 제시한다.

목차

요약
1. 서론
2. Cross-Association
3. CA를 이용한 이미지 클러스터링 방안
4. 실험
5. 결론
참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2012-004-004260625