메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술대회자료
저자정보
SungJoon Lee (명지대학교) Ju Hyun Park (영남대학교) Jae-Woong Youn (대구대학교) Jun Rim Choi (경북대학교) Seung-Soo Han (명지대학교)
저널정보
대한전자공학회 ICEIC : International Conference on Electronics, Informations and Communications ICEIC : 2008
발행연도
2008.6
수록면
1,008 - 1,011 (4page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
Since the neural network was introduced, significant progress has been made on data handling and learning algorithms. Currently, the most popular learning algorithm in neural network training is feed forward error back-propagation (FFEBP) algorithm. Aside from the success of the FFEBP algorithm, a polynomial neural networks (PNN) learning has been proposed as a new learning method. The PNN learning is a self-organizing process designed to determine an appropriate set of Ivakhnenko polynomials that allow the activation of many neurons to achieve a desired state of activation that mimics a given set of sampled patterns. These neurons are interconnected in such a way that the knowledge is stored in Ivakhnenko coefficients. In this paper, the PNN model has been developed using the contact formation for highperformance silicon solar cells experimental data. To characterize contact formation process using PNN, co-firing was processed under varying conditions were analyzed using central composite design (CCD) with three center points. Parameters varied in these experiments included zone 1, zone 2, zone 3 temperatures and belt speed of the furnace. It was shown that the output of the PNN model follows the real experimental measurement data very well.

목차

Abstract
1. Introduction
2. Experiments
3. Polynomial Neural Network Process Modeling
4. PNN Modeling and Results
5. Conclusions
Acknowledgments
References

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2012-569-004333685