메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
김원구 (군산대학교)
저널정보
한국지능시스템학회 한국지능시스템학회 논문지 한국지능시스템학회 논문지 제20권 제4호
발행연도
2010.8
수록면
528 - 533 (6page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문에서는 인간의 감정 변화의 영향을 적게 받는 음성 인식 시스템의 학습 방법에 관한 연구를 수행하였다. 이를 위하여 우선 다양한 감정이 포함된 음성 데이터베이스를 사용하여 감정 변화가 음성 신호와 음성 인식 시스템의 성능에 미치는 영향에 관한 연구를 수행하였다. 감정이 포함되지 않은 평상의 음성으로 학습된 음성 인식 시스템에 감정이 포함된 인식 데이터가 입력되는 경우 감정에 따른 음성의 차이가 인식 시스템의 성능을 저하시킨다. 본 연구에서는 감정의 변화에 따라 화자의 성도 길이가 변화한다는 것과 이러한 변화는 음성 인식 시스템의 성능을 저하시키는 원인 중의 하나임을 관찰하였다. 본 연구에서는 이러한 음성의 변화를 포함하는 학습 방법을 제안하여 감정 변화에 강인한 음성 인식 시스템을 개발하였다. HMM을 사용한 단독음 인식 실험에서 제안된 학습 방법을 사용하면 감정 데이터의 오차가 기존 방법보다 28.4% 감소되었다.

목차

요약
Abstract
1. 서론
2. 감정에 따른 음성 변화와 주파수 와핑(frequency warping)
3. 감정 변화에 강인한 학습 방법
4. 실험 및 결과
5. 결론
참고문헌
저자소개

참고문헌 (18)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2010-028-002800412