메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

이 논문의 연구 히스토리 (14)

초록· 키워드

오류제보하기
본 논문에서는 자기구성 퍼지다항식 뉴럴 네트워크(SOFPNN)를 구성하고 있는 퍼지 다항식 뉴론(FPN)의 구조와 파라미터를 유전자 알고리즘을 이용하여 최적화시킨 새로운 개념의 진화론적 최적 고급 자기구성 퍼지 다항식 뉴럴 네트워크를 소개한다. 기존의 자기구성 퍼지 다항식 뉴럴 네트워크에서 모델을 설계할 때에는 설계자의 주관적인 특징과 시행착오에 의해서 모델을 구축하였다. 이러한 설계자의 경험을 배제하고 객관적이고 효율적인 모델을 구축하기 위해서 본 논문에서는 FPN의 파라미터들을 최적화 알고리즘인 유전자 알고리즘을 이용하여 동조 하였다. 즉, 모델을 구축하는데 기본이 되는 FPN의 각각의 파라미터들 입력변수의 수, 다항식 차수, 입력변수, 멤버쉽 함수의 수, 그리고 멤버쉽 함수의 정점-을 동조함으로써 기존의 모델에 비해서 구조적으로 그리고 파라미터적으로 최적화된 네트워크를 생성할 수 있다. 뿐만 아니라 주어진 데이터의 특성을 모델 구축에 반영하고자 멤버쉽 함수의 정점 역시 유전자 알고리즘으로 동조하였다. 실험적 예제를 통하여 제안된 모델의 성능을 확인한 결과 기존의 퍼지 모델 및 신경망 모델에 비해서 아주 우수한 근사화 능력과 일반화 능력을 가짐을 알 수 있다.

목차

요약
1. 서론
2. SOFPNN의 최적화
3. SOFPNN 알고리즘 설계
4. 시뮬레이션을 통한 결과 고찰
5. 결론
ACKNOWLEDGMENTS
6. 참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-028-015026429