메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
현재 유비쿼터스 환경에서 대부분의 시스템이 개인화된 추천 서비스를 위한 컨텍스트 인식 과정에서 사용자의 직접 피드백을 받는 경우가 많다. 다양한 서비스가 사용자 주변에 존재한다고 하더라도 사용자가 서비스를 받기 위해 직접 피드백을 하는 경우가 많아지면 invisible service를 받을 수 없게 된다. 본 논문에서는 마이닝 기법을 기반으로 사용자의 프로파일 생성과 갱신, 선호도를 예측하여 효율적인 서비스를 제공하는 컨텍스트 마이닝 시스템을 제안한다. 본 시스템에서는 초기프로파일을 생성할 때만 사용자의 직접 피드백을 이용하고, 사용자 프로파일의 갱신과 선호도 예측, 추천 등 컨텍스트 마이닝 과정에서는 사용자의 행동과 사용자와 유사한 그룹의 선호도, 그리고 사용자의 주변 환경과 같은 컨텍스트 정보를 이용하여 직접 피드백을 최소화한다.

목차

요약
1. 서론
2. 관련연구
3. 컨텍스트 마이닝 시스템 설계
4. 결론 및 향후과제
6. 참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-028-015025962