메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국지능시스템학회 한국지능시스템학회 논문지 퍼지 및 지능 시스템학회 논문지 제15권 제3호
발행연도
2005.6
수록면
282 - 288 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문에서는 기존의 침입탐지 모델인 오용탐지 모델과 비정상 탐지 모델의 장점은 유지하되 단점은 보완하는 견지에서 새로운 침입탐지 모델을 제안한다. MMIDS로 명명된 새로운 침입탐지시스템은 다음의 평가 기준들을 모두 만족하는 차원에서 설계되었다: 1) 시스템에서 학습되지 않은 새로운 공격 유형의 신속한 발견; 2) 탐지된 공격 유형에 대한 세부적 정보의 제공; 3) 빠르고 효율적인 학습 및 갱신으로 인한 경제적인 시스템의 유지/보수; 4) 시스템의 점증성(incrementality) 및 확장성. MMIDS의 핵심 구성요소로 새롭게 제안된 다중 클래스 SVM은 빠르고 효율적인 학습 및 갱신이 가능하여 침입탐지 시스템의 유지보수 비용을 절감할 수 있다. 실험을 통해 유사한 공격 패턴에 대한 분류성능 및 각 공격 유형별 세분화 능력이 우수함을 보인다.

목차

요약
Abstract
1. 서론
2. 다중 클래스 SVM 및 침입탐지 시스템
3. 실험 및 결과 분석
4. 결론
참고문헌
저자소개

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-028-014826918