메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국지능정보시스템학회 지능정보연구 한국지능정보시스템학회논문지 제13권 제3호
발행연도
2007.9
수록면
31 - 45 (15page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
대용량의 데이터 처리에 관한 문제는 데이터 마이닝 내 중요한 이슈 중의 하나이다. 특히 데이터 클러스터링과 같이 컴퓨터 시뮬레이션으로 인한 부하가 큰 경우 더더욱 그러하다. 그러나 대개 이러한 문제는 Random sampling 으로 어느 정도 해결이 가능하다. 문제는 이런 샘플링을 통해서 발생하는 noise의 해결이다. 본 논문에서는 그러한 noise 문제를 극복할 수 있도록 설계된 새로운 데이터클러스터링 알고리즘을 소개한다. 기존의 데이터 클러스팅 알고리즘과의 컴퓨터 비교 실험을 통해 본 알고리즘의 우수성을 밝혔으며 아울러 더 나아가 데이터 set의 일부만을 사용한 시뮬레이션 결과를 통해, 해의 정확도와 상관없이 실험 시간 또한 단축되었음을 보여주고 있다.

목차

1. Introduction
2. Scalable Clustering
3. Optimization-Based Clustering
4. Numerical Results of Instance subset
5. Conclusions and Future Research
References
요약

참고문헌 (28)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-003-016037732