메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
한국통신학회 한국통신학회논문지 한국통신학회논문지 제30권 6C호
발행연도
2005.6
수록면
490 - 496 (7page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
본 논문에서는 퍼지 추론 시스템의 추론 정보를 이용하여 자율적으로 구조를 결정하는 클러스터링 기법을 제안한다. 제안된 기법은 주어진 입출력 데이터를 이용하여 자율적으로 클러스터의 수를 추정하고 동시에 이들 파라미터를 최적화한다. 일반적인 클러스터링 기법에서 볼 수 있었던 비교사학습을 교사학습으로 확장하여 클러스터 추정에 입출력 인과 관계를 고려한 학습을 실시하게 하여 전체 모델의 성능을 개선하고자 하였다. 출력 정보가 입력공간에서 클러스터링 학습에 적용됨으로써 클러스터링에서의 각 클래스의 구분 작업이 더 원활하게 이루어 질 수 있다. 모의실험을 통하여 기존의 연구 결과와 비교하여 제안된 기법의 유용성을 보인다.

목차

요약

ABSTRACT

Ⅰ. 서론

Ⅱ. 자기-구성 클러스터링의 모델링

Ⅲ. 클러스터링을 위한 성능평가 모델

Ⅳ. 모의실험 및 결과

Ⅴ. 결론

참고문헌

참고문헌 (14)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-567-017731583