메뉴 건너뛰기
.. 내서재 .. 알림
소속 기관/학교 인증
인증하면 논문, 학술자료 등을  무료로 열람할 수 있어요.
한국대학교, 누리자동차, 시립도서관 등 나의 기관을 확인해보세요
(국내 대학 90% 이상 구독 중)
로그인 회원가입 고객센터 ENG
주제분류

추천
검색
질문

논문 기본 정보

자료유형
학술저널
저자정보
저널정보
대한건축학회 대한건축학회 논문집 - 계획계 대한건축학회논문집 - 계획계 제20권 제2호
발행연도
2004.2
수록면
185 - 192 (8page)

이용수

표지
📌
연구주제
📖
연구배경
🔬
연구방법
🏆
연구결과
AI에게 요청하기
추천
검색
질문

초록· 키워드

오류제보하기
The purpose of this paper is to analyse evaluation characteristics according to a lighting method of exterior lighting. In this paper, we verified effectiveness of CG as an evaluation tool after we primarily extracted evaluation vocabulary via previous experiment. And then, we conducted subjective evaluation experiment after producing an evaluation object by CG according to a lighting method of exterior lighting. Finally, we analysed the factor of an evaluation result, analysing according to a lighting method of exterior lighting.
The result of this paper is as follows: 1) The physical quantity presented by CG, compared with the real thing, is that the total relative error rate was within 5%. Also it did not have a quite difference in subjective evaluation experiment with the real thing in the most items excluding a part of evaluation items of subjective evaluation experiment by CG. 2) The 3 image axises of「exuberant」,「stable」and「warm」were selected as the result of the factor analysis In order to make sure the evaluation structure of exterior lighting. 「exuberant」and「stable」images were influenced a lot by a lighting method, and 「warm」image was affected by light color. The evaluation on the line lighting, the dot lighting and the compound lighting in「exuberant」image was high, and in「stable」image, the up and down lighting, the「transmitted lighting」, and the compound light were high.
In「warm」image, the light color of yellow color as a warm color type was evaluated high, and the light color of green color as a cold color type was evaluated high in「mysterious」item.

목차

Abstract

1. 서론

2. 야간경관조명의 현황 분석

3. CG를 이용한 주관평가 실험

4. 실험결과 및 분석

5. 결론

참고문헌

참고문헌 (0)

참고문헌 신청

함께 읽어보면 좋을 논문

논문 유사도에 따라 DBpia 가 추천하는 논문입니다. 함께 보면 좋을 연관 논문을 확인해보세요!

이 논문의 저자 정보

이 논문과 함께 이용한 논문

최근 본 자료

전체보기

댓글(0)

0

UCI(KEPA) : I410-ECN-0101-2009-540-014080804